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Abstract. We propose a new model of minority game with intelligent agents who use trail and error method
to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical
minimum values in the long time limit and the global optimization of the system is reached. This suggests
that the economic systems can self-organize into a highly optimized state by agents who make decisions
based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also
present, the simulation results and analytic calculations show that the intelligent agent can gain profits
from producers and are much more competent than the noise traders and conventional agents in original
minority games proposed by Challet and Zhang.

PACS. 02.50.Le Decision theory and game theory – 05.65.+b Self-organized systems – 87.23.Ge Dynamics
of social systems – 87.23.Kg Dynamics of evolution

1 Introduction

The minority game (MG) models were introduced by
Challet and Zhang in 1997–1998 for modelling the compe-
tition for limited resources [1], which have attracted much
attention in recent years. The basic scenario is easy to
explain: there is a population of N players who, at each
time step, have to choose either 0 or 1. Those who are in
the minority side win, the other lose (to avoid ambigui-
ties, N is chosen to be odd). The agents make their de-
cisions based on the most recent m outcomes, thus there
are 2m different histories. A strategy is defined as a ta-
ble of 2m choices (either 0 or 1) for the 2m corresponding
histories, so that there are 22m

different strategies in the
strategy-space. Each agent randomly picks s > 1 strate-
gies from the strategy-space in the beginning of the MG.
To each strategy is associated an integral point, which ini-
tially takes the value 0 and will increase by 1 at each time
step if it predicts the result correctly. Each agent uses the
one with the highest point among his s strategies; if there
are several strategies with the same highest point, one of
those will be chosen randomly. A very important quantity
in this model is the overall loss defined as

L(t) = Nloss(t) − Nwin(t) ≥ 1 (1)

where Nloss and Nwin are, respectively, the number of
losers and winners at time t. The smaller L(t) is, the less
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the overall loss is and thus the better the system per-
forms. Notice that the minimum value of L(t) is 1 when
Nloss = (N +1)/2 and Nwin = (N −1)/2. Another related
quantity is called the standard deviation and defined as

σ2(t) = (n0(t) − n̄)2 (2)

where n0 is the number of agents who choose 0 and
n̄ = N/2. It is easy to see that σ2(t) = L2(t)/4 and theo-
retically, the minimum value of σ2(t) is 0.25.

One of the focuses of scientists’ attention is the prob-
lem about how to improve the performance of system,
i.e. to reduce σ2. Recently, some new kinds of agent are
introduced [2,3], by whom the overall performance of sys-
tem is improved. A further question is whether it is pos-
sible to achieve the global optimization in the framework
of the MG model assuming that agents try to outsmart
each other for their selfish gain and act based on inductive
thinking [4].

Recently, a significant work was achieved by Reents
et al., who proposed a stochastic minority game model in
which σ2 is minimized [5]. In their model, an agent will
not change his choice in the next time step if he wins in
the present turn; on contrary, he will change his choice
with a probability p. The value of p is the same for all the
agents. When p ∼ 1/N , Reents et al., found that σ2 ∼ 1.
However, the agents in real-life systems are not as clever
as Reents et al. proposed, The agents do not know how to
select a value of p, and even do not know the total number
of agents N . Thus Reents’s model may be not proper for
the systems consisting of agent with inductive thinking.
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Metzler and Horn introduced the evolution into a
stochastic MG model [6]. Similar to other evolutionary
MG model [7], for an arbitrary agent i, a probability pi(t)
and a score si is equipped [8]. The score si increases by
1 if the agent wins and decreases by 1 if the agent loses.
When si ≤ d < 0, the agent is deceased and replaced
by a new agent with a reset score si = 0. If pi(t) of the
new agent is randomly distributed in (0, 1), the average
value of pi(t) in the final stationary state has been found
to be of the order of 1 and thus σ2 ∼ O(N2). They also
discussed the situation in which the new agent chooses
pi(t) by copying the value of pj(t) of another agent who
is randomly selected. Within this scheme, it is possible to
see that pi(t) ∼ O(1/N) and σ2 ∼ 1 in sufficiently long
time. However, p is of the order of 1/N and σ2 is greater
than 0.25 in the final state. The best solution is still not
achieved in their model.

In 2001 Marsili et al. [9] proposed a MG model to
reduce σ2. In their model [9], the agents are adaptive in
the sense that they learn from past experience. Explicitly,
the ith agent uses the information accumulated in ∆i(t)
to take decisions (ai(t) = 1 or –1) with the probability

Prob(ai(t) = ±1) =
e±∆i(t)

e∆i(t) + e−∆i(t)

and ∆i(t) is updated by

∆i(t + 1) = ∆i(t) − Γ

N
[A(t) − ηai(t)]

where A(t) =
∑

i ai(t), and Γ and η are the reactive con-
stant and the impact constant, respectively. When the
agents take into account their impact on the game η = 1,
minimization of σ2 is also found for certain range of pa-
rameter Γ . However, it can be shown that if the agents
are very reactive to the past experience, the oscillatory
solution which gives σ2 ∼ N2 is firstly reached and stays
almost unchanged for very long time even if the agents
account for their impact [10]. Since there is no guidance
for the agents to choose the reactive constant, i.e., the
learning rate in reference [9], the action of those agents in
their model should not be classified into the category of
inductive thinking.

In the present paper, we propose a new MG model with
intelligent agents such that the standard deviation σ2 and
the total loss in this model reach the theoretical minimum
values in the limit of long time. The intelligent agents act
based on inductive thinking, but are able to bring global
optimization to the system. Simulation results and an-
alytic calculations show that when other kinds of agents
are also present, the intelligent agent can gain profits from
producers (to be defined below) and are much more com-
petent than the noise traders and conventional agents in
the original MG models [1].

We should mention that when σ2 is minimized, a state
of Nash equilibrium can be reached [11]. However, Nash
equilibrium is a more general concept because it does not
imply the minimization of σ2 [9].

2 Model and numerical simulation

Our model consists of N agents with N an odd integer.
Each agent has only one strategy which evolves with the
following rule: suppose at a given time step t, the memory
(history) is µ and the strategy of the ith agent is si(t, ν)
for ν = 0, ..., 2m − 1. Also, the ith agent has a probability
function pi(t, ν) for ν = 0, ..., 2m − 1. If the ith agent
wins at t, the strategy will not be changed; contrarily,
with probability 1−pi(t, µ), all of si(t, ν) are not changed,
with probability pi(t, µ), si(t + 1, µ) = 1 − si(t, µ), but
si(t + 1, ν) = si(t, ν) for all other ν �= µ.

The initial value of pi(t, ν) is randomly selected in
(0, 1) and evolves by self-teaching mechanism, which is
the simplest trail and error method. For a given time step
t with history µ, consider the last time step t′ when the
memory is also µ. If the agent i won at t′ or he lost but
did not change si(t′, µ), then no changes aiming at pi(t, µ)
will occur. Otherwise, pi(t, µ) will change according to the
following rule:

pi(t + 1, µ) =
{

min(1, 2pi(t, µ)) agent i wins at time t
pi(t, µ)/2 agent i loses at time t.

(3)
No changes will occur for all pi(t, ν) with ν �= µ.

Let us explain our model in a few more words. For
simplicity, consider the case m = 0 and thus the history
index ν can be dropped. In this case, the model can be
described by si(t) and pi(t) at time t. Suppose the ith
agent wins at the time step t − 1, then si(t) = si(t − 1).
Suppose the ith agent loses at t−1, then with probability
1 − pi(t − 1), si(t) = si(t − 1); with probability pi(t − 1),
si(t) = 1 − si(t − 1). The evolution of pi(t) is given as
follows. If si(t) = si(t − 1), then pi(t + 1) = pi(t). Only
when si(t) = 1 − si(t − 1), i.e., when the ith agent loses
at t− 1 and changes his strategy si at t, pi(t + 1) may be
different from pi(t) according to equation (3) based on his
performance at t.

The formula (3) can be understood easily. If agent i
lost at t − 1 and changed si(t) = 1 − si(t − 1) at time t,
and he wins at time t, he will think that to change strategy
when he loses may be advisable and therefore pi(t + 1) is
increased (This implies that he will change his action more
frequent when he loses at later time.); otherwise, if he lost
at t−1 and changed si(t) = 1− si(t−1) at time t, and he
loses again at time t, then he may think that the change
was too hurried, therefore pi(t + 1, µ) is reduced.

We present the simulation results in Figure 1, which
shows that the system will reach global optimization in
sufficiently long time. We have checked the behaviors of
time evolution of σ2(t) for the cases with more agents and
larger memory sizes; the results are the same as that of
N = 101 and m = 0, 1, 2.

Figure 2 presents the log-log plot for the time depen-
dence of G(t) =

∑N
i=1 pi(t) for N = 101 and m = 0. The

results show that G(t) has a power law dependence on
time with the exponent γ ≈ −1 when t is large, which
suggests that G(t) → 0(t → ∞), thus it is reasonable to
suppose pi(t) � 1/N when t is sufficiently large. In this
case, at most one agent may change the strategy at each
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Fig. 1. Time evolution of σ2(t) for N = 101 intelligent agents
with m =0 (a), 1 (b), and 2 (c). The value of σ2(t) shown in
this figure is the average of 10 independent simulations and the
horizontal line represents σ2 = 0.25.

time step (the probability for two or more agents chang-
ing their strategies at the same time is negligibly small)
thus the number of agents on the majority side is always
(N + 1)/2. Therefore, the agent who changes the strategy
is from the losing side to the losing side and pi(t) is re-
duced by a factor of 2. Since pi(t) � 1/N , the probability
that one agent will change his strategy is

η = 1 −
∏

i∈Wl(t)

(1 − pi(t)) ≈
∑

i∈Wl(t)

pi(t) ≈ G(t)
2

where Wl(t) is the set of losers at time t. Then we have
the iterative equations for G(t):

G(t + 1) = η
2N − 1

2N
G(t) + (1 − η)G(t). (4)

According to equation (4), one can find that G(t) ∼
t−1 [12], which is consistent with the simulation result
shown in Figure 2.

It may be helpful to mention that roughly N time steps
are required for our system to reach the theoretical min-

Fig. 2. Time dependence of G(t), where N = 101 and m = 0.
The slope of the curve in this figure is −1.01(≈−1).

imum σ2 ∼ 0.25. Therefore, when N is very large, very
long time are required to reach the global optimization.

3 Intelligent agents in mixed market

Challet et al. classified the agents into three different
types [13]: producers who have only one fixed strategy for
a given history, speculators (conventional agents in origi-
nal minority game) who have two or more strategies, and
the noise traders who make their choices by random tosses.
In this section, we will investigate how intelligent agents
perform in mixed market [14].

Note that the evolution of pi(t, µ) for different memo-
ries is essentially decoupled in our model when only intelli-
gent agents are present. Therefore, mathematically speak-
ing, the m �= 0 case is a trivial generalization of the m = 0
case in this situation. The situations change greatly when
other types of agents are present. In these situations, the
m �= 0 case will not be the trivial generalization of the
m = 0 case.

Firstly, let us look into how the intelligent agents com-
pete with the producers. Assume that there are Np pro-
ducers and Ns intelligent agents with Np + Ns an odd
integer, each producer has only one fixed strategy. For
simplicity, we shall first discuss the case of m = 0. Sup-
pose Np0 producers always choose 0, and Np1 producers
always choose 1. If ∆ = Np0 − Np1 > Ns(< −Ns), then
Ns intelligent agents must choose 1(0) in the equilibrium
state and win at each time step. When Ns > ∆ > 0
(the case Ns > −∆ > 0 is analogic), the situation is
slightly complicated. From the discussion in Section 2, it
is not difficult to see that the overall loss of Np + Ns

agents is minimized in the equilibrium state. Namely,
there will be either (Ns − ∆ + 1)/2 intelligent agents
choosing 0 and (Ns + ∆ − 1)/2 intelligent agents choos-
ing 1 or (Ns − ∆ − 1)/2 intelligent agents choosing 0
and (Ns + ∆ + 1)/2 intelligent agents choosing 1. In the
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former case, the agents choosing 0 are losers, while in the
latter case, the agents choosing 0 are winners. The equi-
librium state is described by the transition between two
cases. Before it switches to another case, the equilibrium
state stays in one case for a period of time, called the
life time. The life times of two cases are different. As-
sume that the distribution of probability pi of agent i has
a sharp peak around 〈p〉, then the life time of the for-
mer case is τ1 = 2/(Ns − ∆ + 1)〈p〉 and the latter case
is τ2 = 2/(Ns + ∆ + 1)〈p〉, where 〈p〉 denotes the average
value of pi. The overall gain of the intelligent agents at
each time step is equal to

Σ =
1

τ1 + τ2
[(

Ns + ∆ − 1
2

− Ns − ∆ + 1
2

)τ1

+ (
Ns − ∆ − 1

2
− Ns + ∆ + 1

2
)τ2]

=
1

Ns + 1
[∆2 − 1 − Ns]. (5)

Therefore, Σ > 0 when ∆ < Ns < ∆2 − 1. The average
profit gained by each intelligent agent at each time step is

Σ

Ns
=

1
Ns(Ns + 1)

[∆2 − 1 − Ns]. (6)

According to equation (6), when Ns < ∆2 − 1, each
intelligent agent can gain profits from producers. Suppose
the number of intelligent agent Ns is not fixed, if Ns <
∆2 − 1, some new intelligent agents, if available, will join
the game since they can gain profits from producers. Thus
there will be eventually Ns ≈ ∆2 − 1 intelligent agents in
the market, whose profits are approximatively equal to 0
with small fluctuations. This process can be considered
as an example for the efficient market hypothesis (EMH),
which is hotly controversial in the recent years [15]. But in
real-life financial market, the number of producers is not
fixed, thus the equilibrium state can rarely be reached.

When m > 0, the number of possible histories is
2m > 1. For a given history µ, suppose Np0(µ) produc-
ers always choose 0 and Np1(µ) producers always choose
1. Then ∆(µ) = Np0(µ)−Np1(µ) is a function of µ. Since
different history µ is essentially decoupled in our model
and the number of intelligent agents Ns is fixed, there
may be three cases under history µ: (i) |∆(µ)| ≥ Ns, each
intelligent agent can gain one point at each time step; (ii)
∆2(µ) − 1 > Ns > |∆(µ)|, the intelligent agents can aver-
agely gain profit from the producers; (iii) ∆2(µ)−1 < Ns,
the intelligent agent cannot gain profit and are character-
ized by the overall loss described by equation (1).

The above picture is confirmed by the numerical sim-
ulation result shown in Figure 3a. One can find that σ2

decreases as t increases and decays to 0.25 when t is suffi-
ciently large. Figure 3b plots the time dependence of the
mean gain for intelligent agents:

As(t) =
Nswin(t) − Nslose(t)

Ns

where Nswin and Nslose denote the number of intelli-
gent agents who win and lose, respectively. Initially, As(t)

Fig. 3. Time evolution of σ2(t) (a) and As(t) (b), where Np =
200, Ns = 801, m = 1 and ∆(0) = ∆(1) = 200. The value of
σ2(t) and As(t) shown in these two figures is the average of 32
independent simulations and the horizontal line in figure (a)
represents σ2 = 0.25.

is negative, but as t increases, As(t) becomes positive.
Therefore, the intelligent agents can gain profits from pro-
ducers in the regime ∆2(µ) − 1 > Ns.

Secondly, let’s consider the case in which the noise
traders and intelligent agents are present. Assume that
there are Nn noise traders and Ns intelligent agents with
Nn + Ns an odd integer. Figure 4a plots the time depen-
dence of σ2, one can find that σ2 decreases as t increases,
but does not reach the theoretical optimal 0.25 in the limit
of long time. This result is not difficult to understand for
the existence of noise traders will bring more fluctuations
into the system. Figure 4b and 4c exhibit the time depen-
dence of As and An respectively, where An is the mean
gain of noise traders:

An(t) =
Nnwin(t) − Nnlose(t)

Nn

Nnwin and Nnlose denote the number of the noise traders
who win and lose, respectively. Apparently, the intelligent
agents perform much better than the noise traders do.

We have also studied the case in which the conven-
tional agents, who take the actions based on the original
minority game model [1] with the memory size mm, and
intelligent agents, who take the m = ms = 0 case, are
present. Assume that there are Ns intelligent agents and
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Fig. 4. Time evolution of σ2(t) (a), As(t) (b), and An(t) (c),
where Ns = 801, Nn = 200 and m = 1. The value of σ2(t),
As(t) and An(t) shown in these three figures is the average of
32 independent simulations and the horizontal line in figure (a)
represents σ2 = 0.25.

Nm conventional agents with Ns+Nm an odd integer. Fig-
ure 5 presents our numerical studies for the case mm = 3.
Figure 5a shows the time dependence of σ2. One sees that
σ2 decreases with time but also does not reach the theo-
retical optimal value 0.25 in the limit of long time. This
result implies that the conventional agents also introduce
fluctuations into the system, though its magnitude is less
than those of the noise traders. In Figure 5b, we report the
time dependence of As and Am respectively, where Am is
the mean gain of conventional agents:

Am(t) =
Nmwin(t) − Nmlose(t)

Nm

Fig. 5. Time evolution of σ2(t) (a), As(t) and Am(t) (b). In
Figure 5b, the dotted line represents the results of Am(t), the
solid line represents the results of As(t). The parameters for
the intelligent agents are Ns = 51 and ms = 0. The param-
eters for the conventional agents are Nm = 50, mm = 3 and
the number of strategies S = 2. The value of σ2(t), As(t) and
Am(t) shown in these two figures is the average of 32 indepen-
dent simulations and the horizontal line in figure (a) represents
σ2 = 0.25.

where Nmwin and Nmlose are the number of the conven-
tional agents who win and lose, respectively. From Fig-
ure 5b, one immediately finds that the intelligent agents
perform much better than the conventional agents. Fig-
ure 6 presents our numerical studies for the case mm = 0.
Comparing with Figure 5, one finds that the results for
these two cases are almost the same.

It may be interesting to ask the question how the pres-
ence of the intelligent agents changes the performance of
conventional agents in the original MG model [1]. We have
also done the numerical simulations for the parameters
Ns = 0, Nm = 51 and mm = 3. We have found that Am(t)
approaches −0.07, which is below the value −0.035 when
the intelligent agents are present and t ∼ 20000 (Fig. 6).
This implies that the performance of the conventional
agents is improved when the intelligent agents are intro-
duced into the model.

Finally, we have studied the case in which the adaptive
agents in the work by Marsili et al. [9] mix with the intel-
ligent agents introduced in this paper. Figure 7 presents
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Fig. 6. Time evolution of σ2(t) (a), As(t) and Am(t) (b). In
Figure 6b, the dotted line represents the results of Am(t), the
solid line represents the results of As(t). The parameters for
the intelligent agents are Ns = 51 and ms = 0. The param-
eters for the conventional agents are Nm = 50, mm = 0 and
the number of strategies S = 2. The value of σ2(t), As(t) and
Am(t) shown in these two figures is the average of 32 indepen-
dent simulations and the horizontal line in figure (a) represents
σ2 = 0.25.

the results for the case that the reactive parameter Γ = 5.
One finds that the adaptive agents perform significantly
worse than the intelligent agents do. Figure 8 presents the
results for the case Γ = 20 which is essentially identical
to the case Γ = 5. It is interesting to remark that the os-
cillatory state, which is observed when only the adaptive
agents are included for the case Γ = 20, is now removed
by the presence of the intelligent agents.

4 Discussion and conclusion

We propose a new MG model with intelligent agents, who
use trail and error method to make a choice. When only
the intelligent agents are present, the overall standard de-
viation (and hence loss L(t) of Eq. (1)) is minimized to
the theoretical lower limit σ2 → 0.25 as t → ∞. Notice
that although such intelligent agents are independent and
only trying to do their best for their selfish gain based on
inductive thinking, the Global Optimization is achieved
in our model. The result suggests that an economic sys-

Fig. 7. Time evolution of the mean gain for the adaptive agents
Am(t) and for the intelligent agents As(t). The dotted line
represents the results of Am(t), the solid line represents the
results of As(t). The parameters for the intelligent agents are
Ns = 51 and m = 0. The parameters for the adaptive agents
are Nm = 50, Γ = 5, and the impact parameter η = 1. The
value of As(t) and Am(t) shown in these two figures is the
average of 320 independent simulations.

Fig. 8. Time evolution of the mean gain for the adaptive agents
Am(t) and for the intelligent agents As(t). The dotted line
represents the results of Am(t), the solid line represents the
results of As(t). The parameters for the intelligent agents are
Ns = 51 and m = 0. The parameters for the adaptive agents
are Nm = 50, Γ = 20, and the impact parameter η = 1. The
value of As(t) and Am(t) shown in these two figures is the
average of 320 independent simulations.

tems can be self-organized into a highly optimal state by
agents who make decisions based on inductive thinking
using their limited knowledge and capabilities.

In mixed market cases, when the model consists of the
intelligent agents and the producers with only one fixed
strategy, we have found that, under certain circumstances,
the intelligent agents can gain profit from the produc-
ers. Also, the overall loss of the producers and the in-
telligent agents is minimized. When the model consists of
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the intelligent agents and the noise traders who choose the
room randomly at each round, it is found that the intel-
ligent agents also cooperate very well so that the overall
loss of the intelligent agents becomes very small when the
time is sufficiently large.

It is worthwhile to emphasize that, the intelligent
agents perform much better than the conventional agents
in mixed market. Imagine an agent trying to figure out the
regularity of the financial market. Assume at time t1, he
has the selection rules for all possible histories, i.e., he has
a strategy. At a later time t2, he finds that the selection
rules for some histories do not give profits. Therefore, he
may change the selection rule for these histories, but not
for the other histories which still give him profits. This
is in contrast with the original MG model in which an
agents selects the strategy with the highest virtual point.
When he changes the strategy, he may change many se-
lection rules although they still make profits. We consider
that this is the reason why the conventional agents are
less competent than intelligent agents.
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